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Consideration is given to the problem of convective heat transfer in slow diffuser flows in coaxial
annular conical channels of constant width. A solution for thermal boundary conditions of the first
kind is obtained by the method of separation of variables. The dependence of the temperature on the
coordinates is represented in the form of a sum of two infinite series in confluent hypergeometric
functions of the transverse coordinate that are multiplied by an exponential dependence on the longi-
tudinal coordinate. The solution is of interest due to its being a superposition of two solutions, each
having its own eigenfunctions and eigenvalues. Relations for evaluation of the initial thermal portion
in the considered flows are also given.

To select the optimum design and technological parameters of die heads, it is necessary to know the
special features of the flow and heat transfer of the melt in the flow elements of the molding equipment. In
the extrusion method of production of strands, granules, tubes, films, etc., on the distribution section of the
molding equipment the polymer melt flows in a coaxial conical channel formed by the cone of the head and
the mandrel [1, 2], where the melt can cool down or warm up. Modern technologies make it possible to
maintain different regimes of heat transfer at the boundaries of the channels, but experimental selection of the
optimum characteristics of the process requires appreciable means. The construction of numerical models of
treatment processes is not always justified either, since in many cases it is possible to obtain adequate rela-
tions between the parameters of the processes using analytical solutions. They can serve as test problems in
adjusting numerical codes.

In [3, 4], the problem of isothermal flow in coaxial conical channels with different locations of the
boundary surfaces is solved, while in [5, 6] a model of the flow and heat transfer in conical gaps with bound-
ary conditions of the third kind is constructed. In this work, we investigate heat transfer in coaxial conical
channels with boundary conditions of the first kind for polymer melts that behave like Newtonian fluids [7]
within the ranges of the treatment parameters. In [5], it is shown that for flow rates of the liquid or dimen-
sions of the channel of practical interest [3, 4] the Reynolds number is Re << 1, the Nem−Griffith number is
Gn << 1, and the Pe′clet number is Pe > 100. These evaluations make it possible to consider the flow of the
melt as a creeping flow [8] and not to take into account in the heat-transfer equation the dissipation heat and
to disregard in it the change in the conductive heat flux along the stream as compared to the change in the
convective heat flux and ultimately to write in a biconical system of coordinates (Fig. 1) determined by the
transformation [9]

z′ = R cos α + X sin α , (1)

y′ = (R sin α − X cos α) sin ϕ , (2)
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x′ = (R sin α − X cos α) cos ϕ (3)

the system of equations of axisymmetric convective heat transfer in the form
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where ξ = R ⁄ h, χ = X ⁄ h, v = V ⁄ V0, V0 = Q ⁄ (πh(2R0 sin α − h cos α)), Π = (P − P0)h ⁄ γV0, σ = ξ sin
α − χ cos α, Pe0 = V0h ⁄ a, Θ = (T − T0)/(T1 − T0), and T1 is the temperature of the channel surface formed by
the external cone.

The boundary conditions are written in the form

v = 0 ,   χ = 0 ,   ξ0 < ξ ≤ ξ1 ; (8)

v = 0 ,   χ = 1 ,   ξ0 < ξ ≤ ξ1 ; (9)

Π = 0 ,   0 ≤ χ ≤ 1 ,   ξ = ξ0 ; (10)

Θ = 0 ,   0 ≤ χ ≤ 1 ,   ξ = ξ0 ; (11)

Fig. 1. Geometry of a conical gap of constant width.
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Θ = 1 ,   χ = 0 ,   ξ0 < ξ ≤ ξ1 ; (12)

Θ = Θ2 ,   χ = 1 ,   ξ0 < ξ ≤ ξ1 . (13)

For cases of practical importance where ξ tan α >> 1 the solution of the system of equations (4)–(6)
and (8)–(11) in the adopted notation has the form [3]

v = 
6 (2ξ0 sin α − cos α)

cos α − 2ξ sin α
 (χ2 − χ) ,

(14)

Π = − 
6 (cos α − 2ξ0 sin α)

sin α
 ln 

1 − 2ξ tan α
1 − 2ξ0 tan α

 , (15)

and then we will write Eq. (7) as

6Pe0 (2ξ0 sin α − cos α)
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The solution of problem (16), (12), and (13) is obtained by the method of expansion in eigenfunctions
of the corresponding Sturm−Liouville problem
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where

Ein (ξ, χ) = exp 
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are the eigenfunctions of the Sturm−Liouville operator that corresponds to problem (16), (12), and (13), µ1n

and µ2n are the roots of the equations 1F1
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∫ 
−1

1

(1 − t2) Ψin
2 dt is the square of the norm of the eigenfunctions, and 1F1(α, γ; x) is the confluent hypergeomet-

ric function. Furthermore, the notation Pe = 
Q

πah
 is introduced here, and then Pe0 = 

Pe
2ξ0 sin α − cos α

.

We note that the value of µn can be calculated with an accuracy acceptable for calculations using the
relation [10] µ1n = 4n + 5 ⁄ 3, and, as calculations show, the relation µ2n ≈ µ1n + 2 holds.

Using (17), we can calculate the mass-mean temperature of the flow
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v
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is the average dimensionless velocity.
Let us determine the local dimensionless heat transfer coefficients Nu by referring the heat-transfer

coefficients to the difference between the mass-mean temperature of the fluid and the temperature of the wall:
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In studying the heat transfer we will consider three characteristic cases of assigning temperatures at
the boundaries: the first, where the temperatures at the boundaries are equal, i.e., Θ1 = Θ2 = 1; the second,
where the dimensionless temperatures are equal in absolute value and opposite in sign, i.e., Θ1 = −Θ2 = 1;
the third, where Θ2 assumes arbitrary values.

Performing differentiation in (20), we obtain
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E1n (ξ, 0) = exp 
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From (21) it follows that Nu2 = Nu1 for Θ1 = Θ2, and Nu2 = −Nu1 for Θ1 = −Θ2.
We consider the special features of heat transfer in a channel with a dimension ξ = 40 and a dimen-

sionless length of the generatrix ∆ξ = ξ1 − ξ0 = L ⁄ h = 60.
With boundary conditions of even parity (Θ1 = Θ2 = 1) the temperature of the fluid near the walls

changes practically in like manner (Fig. 2). For values of the Pe′clet number Pe < 104 the thermal boundary
layer spreads to practically the entire cross section of the flow at a short distance from the inlet, and the
Nusselt numbers rapidly decrease along the flow, reaching their limiting value Nu∞ = 3.77035 (Fig. 3), which
coincides with the value Nu∞ for a plane channel − 3.77035 [11]. At large values of the Pe′clet number Pe
> 104 the temperature of the fluid does not manage to spread uniformly over the cross section of the flow
during the stay of the fluid in the channel, and the Nusselt numbers do not reach their limiting values.

An increase in the angle of the channel’s opening α leads to a decrease in the average velocity of the
fluid (19) at equal Pr and ξ0 and an increase in the heat-exchange surface, which causes the temperature of

Fig. 2. Distribution of the dimensionless temperature in a channel with
the dimensionless parameters ξ0 = 40 and ξ1 = 100: a) for the angle of
opening α = 15o, the Pe′clet number Pe = 104, and the temperatures Θ1

= 1 and θ2 = 1 at the channel boundaries; b) for α = 90o, Pe = 7⋅104,
Θ1 = 1, and Θ2 = −1; c) for α = 15o, Pe = 2⋅104, Θ1 = 1, and Θ2 = 0.2;
d) for α = 90o, Pe = 104, Θ1 = 1, and Θ2 = 3. 
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the fluid to be equalized more rapidly and the limiting values of the Nu numbers to be reached at a smaller
distance (Fig. 3).

Statistical processing of numerical experiments made it possible to obtain an expression for determin-
ing the length of the initial thermal portion, i.e., the portion starting with which the Nusselt numbers change
by less than 1% in the considered case: 

lin.th = (ξin.th − ξ0) h = 0.01 h √ξ0  



− 3Pe−0.054 + 1.6⋅10−1 

Pe0.95

sin α
 −  4⋅10−9 

Pe1.94

sin2 α




 . (22)

Using (22) one can calculate lin.th within the following ranges of change in the parameters of the
problem with acceptable accuracy: 3 ≤ ξ0 ≤ 500, 100 ≤ Pe ≤ 106, and 3o ≤ α ≤ 90o.

For a flow with boundary conditions of odd parity (Θ1 = −Θ2 = 1) the change in the temperature at
the walls of the channel has an opposite character, and at a certain distance from the inlet the dependence of
the dimensionless temperature on χ becomes practically linear (Fig. 2), changing from 1 to −1. But due to the
difference in the radii of curvature of the inner and outer walls of the channel the average temperature of the
fluid differs from 0 and has a nonmonotonic character of change along the stream (Fig. 3).

This is due to the fact that near the inlet to the channel the radii of curvature of the boundary sur-
faces have the maximum difference and the fluid "heated" near the exterior surface flows in a somewhat
greater amount than the fluid "cooled" near the interior surface of the channel. Farther along the flow the

Fig. 3. Nusselt numbers and dimensionless mass-mean temperature of the
fluid vs. longitudinal coordinates: a) for a flow in a channel with the
temperatures Θ1 = 1 and Θ2 = 1 at the boundaries and the angle of open-
ing α = 15o [1–5) mass-mean temperatures; 6–10) Nusselt numbers; 1, 6)
for Pe = 103; 2, 7) 2⋅103; 3, 8) 10−4; 4, 9) 7⋅104]; b) mass-mean tempera-
ture for a flow with the dimensionless temperatures Θ1 = 1 and Θ2 =
−1 at the boundaries [1) for Pe = 2⋅104 and α = 60o; 2) 2⋅104 and 30o;
3) 7⋅104 and 15o; 4) 2⋅104 and 15o; 5) 2⋅103 and 15o; 6) 2⋅102 and 15o;
7) 2⋅104 and 3o]; c) for a flow in a channel with the dimensionless tem-
peratures Θ1 = 1 and Θ2= −1 at the boundaries (Nu1 are positive values
and Nu2 are negative values) [1) for Pe = 2⋅102 and α = 15o; 2) 2⋅103

and 15o; 3) 2⋅104 and 60o; 4) 7⋅104 and 90o; 5) 2⋅104 and 15o; 6) 7⋅104

and 15o; 7) 2⋅104 and 3o; 8) 7⋅104 and 3o].
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difference in the curvature of the surfaces decreases, and the mass-mean temperature will asymptotically ap-
proach 0.

Over a certain interval of the development of the temperature field the maximum absolute values of
the Nusselt numbers occur close to the inlet, but with the establishment of the temperature distribution the
numbera Nu1 and Nu2 asymptotically approach their limiting values Nu1∞ = −2 and Nu2∞ = 2. The increase
in the number Pe characterizes the enhancement of the effect of convective heat transfer, which leads to
growth of the length of the initial thermal portion (Fig. 3).

The calculations done showed that lin.th is 2–3 times greater with boundary conditions of odd parity
than with ones of even parity.

An increase in the angle of opening of the channel α at constant ξ0 and Pe, just as in the case of heat
exchange considered earlier, leads to a decrease in the length of the initial thermal portion. The mass-mean

Fig. 4. Dependences on the longitudinal coordinate: a) of the dimension-
less mass-mean temperature [1) for a flow in a channel with the angle of

opening α = 15o, the Pe′clet number Pe = 2⋅104, and the boundary tem-

peratures Θ1 = 1 and Θ2 = 0.2; 2) for steady-state heat transfer in a flow

with the parameters α = 15o, Pe = 2⋅104, Θ1 =1, and Θ2 = 0.2; 3) for a

flow with the parameters α = 90o, Pe = 104, Θ1 = 1, and Θ2 = 3]; b) of

the Nusselt numbers (1, 4) and the derivatives 
∂Θ
∂χ

 at the boundaries (2,

3, 5–8) [1) Nu1 and 4) Nu2 for a flow in a channel with the angle of

opening α = 15o, Pe = 2⋅104, and Θ1 = 1 and Θ2 = 0.2; 2) 
∂Θ
∂χ  χ=0

 and

3) 
∂Θ
∂χ  χ=1

 for the parameters α = 90o, Pe = 104, and Θ1 = 1 and Θ2 =

3; 5) 
∂Θ
∂χ  χ=0

 and 6) 
∂Θ
∂χ  χ=1

 for the parameters α = 15o, Pe = 2⋅104, and

Θ1 = 1 and Θ2 = 0.2; 7, 8) limiting values of the derivatives].
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temperature decreases (Fig. 3) due to the decrease in the difference of the radii of curvature of the surfaces
forming the channel, and for α = 90o (radial flow between parallel plates) it becomes equal to 0.

In the case of heat transfer with arbitrarily assigned temperatures at the channel boundaries the main
regularities of establishment of the temperature in the channel are consistent with the ones considered earlier,
but there are special features in determining the heat fluxes at the channel boundaries.

Since the dimensionless mass-mean temperature of the flow reaches the temperature of one wall of
the channel at a certain distance from the inlet ξ (Fig. 4), the Nusselt number determined by the traditional
method (20) undergoes a discontinuity on this wall (Fig. 4); at the same time, there are no extreme features
in the temperature distribution (see Fig. 2); therefore, in this case expression (20) cannot be used to determine
the heat fluxes at the channel boundaries. If in definition (20) the derivative at the boundary is referred to the
difference of the dimensionless mass-mean temperature and the larger of the dimensionless temperatures at
the boundaries, one of the definitions will lose physical meaning.

If we find the coefficients of heat transfer at the channel boundary as a ratio of the heat flux on the
wall to the scale for making the temperature dimensionless, the dimensionless heat flux will be determined as

Nu∗  = − 
∂Θ
∂n



 n=0

 , (23)

where n is the normal directed toward the fluid, and then we will obtain comparable expressions that deter-
mine the dimensionless heat fluxes at the boundaries:

Nui
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 χ=i−1

 . (24)

It is clear that expressions (24) reach their limiting values only upon establishment of a practically
linear temperature profile (Figs. 3 and 4), and this is true for all the cases considered.

We note that the heat flux at the boundary with a lower dimensionless temperature (if they are of the
same sign) changes its direction at a certain distance from the inlet (Figs. 2d and 4), and this distance, as a
rule, does not coincide with the distance at which the dimensionless mass-mean temperature reaches the value
of the dimensionless temperature at this boundary.

Expressions (24) seem to be the most suitable ones for investigating convective heat transfer in chan-
nels whose cross section is multiply connected regions with different temperatures at the boundaries.

In conclusion we note that the functional series in (17) converge uniformly for ξ > ξ0 for parameters
of the problem that satisfy the adopted limitations [12]. An analysis of expressions (17) and (21) and numeri-
cal summation show that in determining the eigenvalues µin and calculating confluent hypergeometric func-

tions with a relative error of 10−16 the terms of the functional sequences of partial sums of the indicated

series starting with the number n ≈  INT 




√Pe

(ξ − ξ0)2




, differ by no more than 0.01%. It is with this relative

error that the sums of the series in (17) and (21) were calculated. The accuracy of the calculation can be
verified using the law of conservation of energy

 cρQ (∆T
__

 − T0) = 2π  ∫ 
R0

R1

 [(q1 − q2) R sin α + hq2 cos α] dR , (25)

where q1 and q2 are the heat fluxes at the boundaries of the channel χ = 0 and χ = 1, respectively. We write
(25) in dimensionless form as
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Calculations show that the right- and left-hand sides of (26) coincide within the accuracy of the com-
putations.

NOTATION

a, thermal-diffusivity coefficient, m2/sec; c, specific heat, J/(kg⋅K); h, channel width, m; i
→
R, i

→
X, and

i
→
ϕ, unit vectors in the biconical coordinate system; INT, function of separation of the integral part of a num-

ber; L, length of the conical portion of the channel, m; P and P0, running and inlet pressures, Pa; Q, volume
flow rate, m3/sec; R, radial coordinate, m; T, temperature, K; V and V0, running velocity and velocity at the

inlet to the channel, m/sec; x′, y′, z′, Cartesian coordinates, m; α, half-angle of opening of the cone, rad; γ,

dynamic coefficient of viscosity, Pa⋅sec; λ, thermal conductivity of the fluid, W/(m⋅K); µ, eigenvalues of the

Sturm−Liouville problem; ρ, density, kg/m3; X, transverse biconical coordinate, m; Gn = 
γV0

2

λ∆Trheol
, Nem−Grif-

fith number; Pe0 = 
V0hcρ

λ
, Pe′clet number at the inlet to the channel; Re = 

hV0ρ
γ

, Reynolds number. Sub-

scripts: i = 1, 2 (introduced to shorten the representation); n, number of the eigenvalue and the corresponding
eigenfunction.
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